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Abstract. We consider theN -coupled higher-order nonlinear Schrödinger (N -CHNLS) equations
which govern simultaneous propagation ofN fields in a fibre with all higher-order effects such as
higher-order dispersion, self-steepening and stimulated inelastic scattering. Painlevé analysis is
used to identify the integrable form ofN -CHNLS equations. We generalize the 2×2 Ablowitz–
Kaup–Newell–Segur method to a(2N + 1)× (2N + 1) eigenvalue problem and construct the Lax
pair. Using the inverse scattering transform, one-soliton solutions are derived explicitly.

1. Introduction

The discovery of optical solitons paved the way to overcome chromatic dispersion constraints
in fibre optics. Solitons in optical fibre are formed by an exact balance between group velocity
dispersion (GVD) (a linear effect) and self-phase modulation (SPM) (a nonlinear effect). This
was predicted theoretically by Hasegawa and Tappert [1] and observed experimentally by
Mollenaueret al [2]. The dynamics of nonlinear wave propagation in a single-mode fibre is
governed by the famous nonlinear Schrödinger (NLS) equation of the form [1, 3, 4],

EZ = i
(
α1ETT + α2|E|2E

)
(1)

whereE is the slowly varying envelope of the axial field,α1 andα2 are GVD and SPM
parameters, respectively, and the subscriptsZ and T denote spatial and temporal partial
derivatives.

For transmitting pulses at high bit rate, it is necessary to propagate ultra-short pulses. In
1986, Mitschke and Mollenauer [5] reported that ultra-short pulses suffer from a self-frequency
shift due to the Raman effect. Ultra-short pulses not only suffer from stimulated Raman (or
inelastic) scattering but also from higher-order dispersion (HOD) and Kerr dispersion (also
called self-steepening) [3, 4, 6]. HOD is a linear effect but, unlike GVD, it broadens the pulses
asymmetrically in the time domain. Kerr dispersion is due to the intensity dependence of the
group velocity. This forces the peak of the pulse to travel faster than the wings, which causes
an asymmetrical spectral broadening. Stimulated Raman scattering gives a self-frequency
shift to pulses. The self-frequency shift is a self-induced redshift in the pulse spectrum arising
from the Raman effect: long-wavelength components of the pulse experience Raman gain at
the expense of short-wavelength components, resulting in an increasing redshift as the pulse
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propagates. It has been recognized that the self-frequency shift is a potentially detrimental
effect in soliton communication systems due to the fact that the power fluctuations in the source
translate into frequency fluctuations in the fibre through the power dependence of the soliton
self-frequency shift and hence into timing jitter at the receiver [7]. With all of these effects,
nonlinear wave propagation is governed by the higher-order nonlinear Schrödinger (HNLS)
equation [3, 4, 6, 8–10] of the form,

EZ = i
(

1
2ETT + |E|2E)− ε[α3ETT T + α4(|E|2E)T + α5E(|E|2)T

]
(2)

whereα3, α4 andα5 represent the HOD, self-steepening and stimulated inelastic scattering
parameters, respectively.

An inverse scattering transform (IST) scheme for the HNLS equation for the condition
α3:α4:(α4 + α5) = 1:6:3, was applied by Sasa and Satsuma [8]. Painlevé analysis and other
related integrable properties of the HNLS equation were carried out in [9, 10]. With some
suitable transformations and reductions, Kodama [11] reduced the HNLS equation to a Hirota
equation [12].

For handling more channels it is necessary to propagate more than one field simultaneously.
Transmission of many fields simultaneously in a fibre is called wavelength division
multiplexing (WDM). In 1974, Manakov [13] derived the coupled NLS equations from the
NLS equation by considering that the total field is comprised of two fields (left and right
polarizations). In a similar way, coupled HNLS (CHNLS) equations have been proposed and
it has been shown that the system equation is integrable for a particular form using Painlevé
analysis [14]. The linear eigenvalue problem for CHNLS equations and exact one-soliton
solutions generated using the Bäcklund transformation are given in [15]. A similar analysis
was also extended to simultaneous propagation of three fields. The bilinear form for the
CHNLS equations and associated soliton solutions were constructed in [16].

Here we consider simultaneous propagation ofN nonlinear waves in a fibre medium with
all higher-order effects namely, HOD, self-steepening and stimulated inelastic scattering. The
wave dynamics of the system is governed byN -CHNLS equations of the form,

EjZ = i

(
1
2EjT T +

N∑
n=1

|En|2Ej
)
− ε

[
α3EjT T T + α4

( N∑
n=1

|En|2Ej
)
T

+ α5Ej

( N∑
n=1

|En|2
)
T

]
j = 1, 2, . . . , N. (3)

Here in equation (3) the weighting factors between the self-phase modulation effects and the
cross-phase modulation effects are considered equally. Usually they will not be equal but
for the following two cases, one can consider equal weighting factors. Case (i) for a purely
electrostrictive nonlinearity [17] and case (ii) in the case of elliptical bifringence [18].

In this paper we use Painlevé singularity structure analysis to identify an integrable form
of the system equation (3). To derive the Lax pair for the integrable form ofN -CHNLS
equations, the 2×2 Ablowitz–Kaup–Newell–Segur (AKNS) formalism [19] is generalized to
a (2N + 1) × (2N + 1) linear eigenvalue problem. Finally, an IST scheme [20] is used to
generate exact single-soliton solutions.

2. Painlev́e analysis

A new set of variablesaj (= Ej) andbj (= E∗j ) (j = 1, 2, . . . , N) are introduced for the
purpose of Painlev́e singularity structure analysis [21]. Thus, using equation (3),aj andbj
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can be written as

ajZ = i

(
1
2ajT T +

N∑
n=1

anbnaj

)
− ε

[
α3ajT T T + α4

( N∑
n=1

anbnaj

)
T

+ α5aj

( N∑
n=1

anbn

)
T

]

bjZ = −i

(
1
2bjT T +

N∑
n=1

anbnbj

)
− ε

[
α3bjT T T + α4

( N∑
n=1

anbnbj

)
T

+ α5bj

( N∑
n=1

anbn

)
T

]
.

(4)

Generalized Laurent series expansion ofaj andbj are

aj = φµj
∞∑
k=0

ajk(Z, T )φ
k

bj = φδj
∞∑
k=0

bjk(Z, T )φ
k

(5)

with aj0, bj0 6= 0, whereµj andδj are negative integers,ajk andbjk are a set of expansion
coefficients which are analytic in the neighbourhood of the non-characteristic singular manifold
φ(Z, T ) = T + ϕ(Z) = 0. Looking at the leading order,aj ≈ aj0φ

µj
j andbj ≈ bj0φ

δj
j

are substituted in equation (4) and upon balancing dominant terms, the following results are
obtained:

µj = δj = −1
N∑
n=1

an0bn0 = −6α3

3α4 + 2α5
.

(6)

Substituting full Laurent series and considering leading-order terms alone, the resonances are
found to be

k = −1, 0, 0, 0, . . . ,0︸ ︷︷ ︸
(2N−1) times

, 3, 4 and 3± 2
√
(−α5)/(3α4 + 2α5)︸ ︷︷ ︸
(2N−1) times

. (7)

The resonance value atk = −1 represents the arbitrariness of the singularity manifold
φ(Z, T ) = T + ϕ(Z) = 0, while resonances atk = (2N − 1) zeros are associated with
the arbitrariness of the functionaj0 andbj0 (as seen in equation (6)). Also, by collecting
coefficients of different powers ofϕ, it is seen that equation (4) admits a sufficient number
of arbitrary functions atk = 3, 4 and(2N − 1)(3± 2

√
(−α5)/(3α4 + 2α5)) for the condition

α3:α4:(α4 + α5) = 1:6:3. Thus from Painlev́e analysis, the integrable form of equation (3) is
obtained as

EjZ = i

(
1
2EjT T +

N∑
n=1

|En|2Ej
)
− ε

[
EjT T T + 6

N∑
n=1

|En|2EjT + 3Ej

( N∑
n=1

|En|2
)
T

]
. (8)

3. IST scheme forN -CHNLS equations

In order to analyse equation (8) it is rather convenient to introduce the following variable
transformations:

uj (x, t) = Ej(T , Z)exp

[−i

6ε

(
T − Z

18ε

)]
t = Z
x = T − Z

12ε
.

(9)
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Then, equation (8) reduces toN -coupled complex modified Korteweg–deVries (KdV)-type
equations,

ujt + ε

[
ujxxx + 6

N∑
n=1

|un|2ujx + 3uj

( N∑
n=1

|un|2
)
x

]
= 0. (10)

To construct a Lax pair, we generalize the 2×2 AKNS method [19] to a(2N + 1)× (2N + 1)
linear eigenvalue problem and obtain a Lax pair for equation (10). It should be noted that the
HNLS equation considered by Sasa and Satsuma [8] admits a 3× 3 Lax pair and two-coupled
HNLS equations and three-coupled HNLS equations [15] admit 5× 5 and 7× 7 Lax pairs,
respectively.

The Lax pair forN -coupled complex modified KdV equations (10) is derived as

∂9

∂x
= U9

9 = (91 92 93 · · · 92N+1
)T (11)

where

U =



−iζ 0 · · · 0 0 0 0 uN

0 −iζ · · · 0 0 0 0 u∗N
...

...
. . .

...
...

...
...

...

0 0 · · · −iζ 0 0 0 u2

0 0 · · · 0 −iζ 0 0 u∗2
0 0 · · · 0 0 −iζ 0 u1

0 0 · · · 0 0 0 −iζ u∗1
−u∗N −uN · · · −u∗2 −u2 −u∗1 −u1 iζ


. (12)

ζ is the spectral parameter and an asterisk denotes a complex conjugate. Time evolution of
the eigenfunction9 is given by

∂9

∂t
= V9 (13)

V = −4iεζ 3



1 0 · · · 0 0 0 0 0

0 1 · · · 0 0 0 0 0

...
...

. . .
...

...
...

...
...

0 0 · · · 1 0 0 0 0

0 0 · · · 0 1 0 0 0

0 0 · · · 0 0 1 0 0

0 0 · · · 0 0 0 1 0

0 0 · · · 0 0 0 0 −1
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+ 4εζ 2



0 0 · · · 0 0 0 0 uN

0 0 · · · 0 0 0 0 u∗N
...

...
. . .

...
...

...
...

...

0 0 · · · 0 0 0 0 u2

0 0 · · · 0 0 0 0 u∗2
0 0 · · · 0 0 0 0 u1

0 0 · · · 0 0 0 0 u∗1
−u∗N −uN · · · −u∗2 −u2 −u∗1 −u1 0



+2iεζ



|uN |2 u2
N · · · u∗2uN u2uN u∗1uN u1uN uNx

u∗2N |uN |2 · · · u∗2u
∗
N u2u

∗
N u∗1u

∗
N u1u

∗
N u∗Nx

...
...

. . .
...

...
...

...
...

u2u
∗
N u2uN · · · |u2|2 u2

2 u2u
∗
1 u2u1 u2x

u∗2u
∗
N u∗2uN · · · u∗22 |u2|2 u∗2u

∗
1 u∗2u1 u∗2x

u1u
∗
N u1uN · · · u1u

∗
2 u1u2 |u1|2 u2

1 u1x

u∗1u
∗
N u∗1uN · · · u∗1u

∗
2 u∗1u2 u∗21 |u1|2 u∗1x

u∗Nx uNx · · · u∗2x u2x u∗1x u1x −2A



+ε



u∗NxuN − u∗NuNx 0 · · · u∗2xuN − u∗2uNx u2xuN − u2uNx

0 u∗NuNx − u∗NxuN · · · u∗2xu
∗
N − u∗2u∗Nx u2xu

∗
N − u2u

∗
Nx

...
...

. . .
...

...

u2u
∗
Nx − u2xu

∗
N u2uNx − u2xuN · · · u∗2xu2 − u∗2u2x 0

u∗2u
∗
Nx − u∗2xu∗N u∗2uNx − u∗2xuN · · · 0 u∗2u2x − u∗2xu2

u1u
∗
Nx − u1xu

∗
N u1uNx − u1xuN · · · u1u

∗
2x − u1xu

∗
2 u1u2x − u1xu2

u∗1u
∗
Nx − u∗1xu∗N u∗1uNx − u∗1xuN · · · u∗1u

∗
2x − u∗1xu∗2 u∗1u2x − u∗1xu2

4Au∗N + u∗Nxx 4AuN + uNxx · · · 4Au∗2 + u∗2xx 4Au2 + u2xx

u∗1xuN − u∗1uNx u1xuN − u1uNx −4AuN − uNxx
u∗1xu

∗
N − u∗1u∗Nx u1xu

∗
N − u1u

∗
Nx −4Au∗N − u∗Nxx

...
...

...

u2u
∗
1x − u2xu

∗
1 u2u1x − u2xu1 −4Au2 − u2xx

u∗2u
∗
1x − u∗2xu∗1 u∗2u1x − u∗2xu1 −4Au∗2 − u∗2xx

u∗1xu1− u∗1u1x 0 −4Au1− u1xx

0 u∗1u1x − u∗1xu1 −4Au∗1 − u∗1xx
4Au∗1 + u∗1xx 4Au1 + u1xx 0


(14)

whereA = ∑N
n=1 |un|2. Hence, equations (11) and (13) constitute an IST scheme for

equation (10) (and equation (8) simultaneously).
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From the Jost functions, satisfying the boundary conditions and from the time evolution
part of the linear eigenvalue problem, we derive the time-dependent scattering data. The
Gel’fand–Levitan–Marchenko equation is derived by defining integral kernels using the
standard IST procedure.

4. One-soliton solutions

Taking the eigenvalueζ of single-soliton solution as

ζ = (ξ + iη) (15)

we have the single-soliton solution as

uj (x, t) = 2ηγj
β

exp
{
i
[

1
2π − 8εξ(ξ2 − 3η2)t − 2ξx

]}
sech

[
8εη(η2 − 3ξ2)t − 4ηx + θ

]
(16)

where

γj = C(2N+1)j (0)

α′(2N+1)(2N+1)(ζ
∗)

β2 =
2N∑
p=1

∣∣∣∣ C(2N+1)p(0)

α′(2N+1)(2N+1)(ζ
∗)

∣∣∣∣2
θ = ln(β/2η).

(17)

(Cs andαs are scattering data.) Thus, the single-soliton solution forN -CHNLS equations (8)
can be written as

Ej(Z, T ) = 2ηγj
β

exp

{
i

[
1
2π − 8εξ(ξ2 − 3η2)Z − 2ξ

(
T − Z

12ε

)
+

1

6ε

(
T − Z

18ε

)]}
× sech

[
8εη(η2 − 3ξ2)Z − 4η

(
T − Z

12ε

)
+ θ

]
. (18)

In a similar way, one can generateN -soliton solutions forN -CHNLS equations. The one-
soliton solution for one-, two- and three-field (i.e.j = 1, 2 and 3 in equation (18)) propagation
from the IST scheme is the same as that generated from the Bäcklund transformation in [9, 15].

5. Conclusion

Thus, in this paper, we have consideredN -CHNLS equations which govern simultaneous
propagation ofN fields in a fibre medium with all higher-order effects, namely HOD, self-
steepening and stimulated Raman scattering. Using Painlevé analysis, an integrable form
of the N -CHNLS equations was derived. Similarly to the single-field propagation case
[9], the asymmetrical temporal broadening due to HOD is exactly counterbalanced by the
asymmetrical spectral broadening due to Kerr dispersion and stimulated Raman scattering
for the conditionα3:α4:(α4 + α5) = 1:6:3, inN -field propagation also. Then, using suitable
variable transformations,N -CHNLS equations have been transformed toN -coupled complex
modified KdV-type equations. With the help of a(2N + 1) × (2N + 1) linear eigenvalue
problem, exact one-soliton solutions were generated from the IST scheme. We hope that these
analytical results will help in understanding WDM in fibre media with all higher-order effects.
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